
© 2018 JETIR October 2018, Volume 5, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR1810A41 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 949

Emerging Artificial Intelligence Technics in

Software Engineering

Gowthami Vusirikkayala, Assistant Professor, SREC Nandyal,

Abstract: There has been a recent surge in interest in the application of Artificial Intelligence (AI) techniques to
Software Engineering (SE) problems. The work is typified by recent advances in Search Based Software Engineering,
but also by long established work in Probabilistic reasoning and machine learning for Software Engineering. This
paper explores some of the relationships between these strands of closely related work, arguing that they have
much in common and sets out some future challenges in the area of AI for SE. Software development is a very
complex process that, at present, is primarily a human activity. Programming, in software development, requires the
use of different types of knowledge: about the problem domain and the programming domain. It also requires many
different steps in combining these types of knowledge into one final solution. This paper intends to review the
techniques developed in artificial intelligence (AI) from the standpoint of their application in software engineering. In
particular, it focuses on techniques developed (or that are being developed) in artificial intelligence that can be
deployed in solving problems associated with software engineering processes.

Keywords: Analysis, Synthesis, Programming, Domain, Conversion, Design, Coding

I.INTRODUCTION

Three fundamental questions are likely to run through your

mind as you read this paper.

• What is software engineering?

• What is artificial intelligence (AI)?

• What are the aspects of software engineering that makes it

amenable to concepts and techniques in artificial

intelligence?

Figure1: Symbolic representation of AI

Software engineering is the act of adopting engineering

principles in software development. In this act, the principles

of analysis and synthesis are observed. Analysis is the

process of breaking something into pieces or components

with a view to understanding the individual components.

Synthesis, the reverse of analysis, is the putting

Together of a large structure from small building blocks.

Thus, any problem-solving technique must have two parts:

analyzing the problem to determine its nature and then

synthesizing a solution based on the analysis.

II. SOFTWARE ENGINEERING AND

ARTIFICIAL INTELLIGENCE

Software engineering requires two kinds of knowledge:

programming knowledge (e.g. data structure construction,

control structure, programming language syntax, and how to

combine and choose them); and domain knowledge (e.g.

concepts, theories and equations characterizing the particular

domain). Each domain has its own terms and properties,

which must be linked to the programming language in which

the software is being developed. Thus, it requires that there

be a conversion from one knowledge set to another (e.g.

from domain to programming language and vice versa). This

obviously requires some method of conversion which

requires some techniques in AI. The bottom line in this

conversion is that both languages are formal thus making it

particularly suitable for AI. There is a similar mapping

taking place when going from the requirements specification

stage to the design stage, though the initial specification is

an informal description of the problem. Thus, the conversion

is from an informal statement to a formal one. Software

engineering also involves modeling, analysis, and the

generation of alternate designs, which entails problem

decomposition. Techniques are needed to analyze and

evaluate these decompositions in order to choose one design

over the others. The kind of decision making needed at this

stage is amendable to AI.

http://www.jetir.org/

© 2018 JETIR October 2018, Volume 5, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR1810A41 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 950

First, in the translation from the informal description of

requirements into formal descriptions, natural language

processing, a sub field in AI, may be used. The task is not so

much of direct translation from the natural language to a

formal one, but rather to provide help to users since there is

no completely automated process that can convert natural

language representations to a formal form. However, it can

generate questions and elaborations of what the user is

writing in natural language. It is the response to these

questions that eventuality forms what the system generates.

In database management systems, this technique has been

adopted in that the naïve user now has a natural English

view through which he can write query statements in pure

natural English. This sub field of AI encompasses:

• Voice Communication: for person-to-computer

interaction through vocal inputs with microphone;

• Speech Synthesis: for computer-to-person interaction

through sound generated by a synthesizer;

• Language Comprehension: for person-computer

interaction through symbols such as text and words.

Adopting this feature in software engineering can go a long

way to solve the problem of extensive documentation.

The traditional view of software development process begins

at the requirements specification and ends at testing the

software. At each of these stages, different kinds of

knowledge (design knowledge at design stage and

programming and domain knowledge at the coding stage)

are required. At each of the two stages: design and coding,

exist a cycle: error recognition and correction. Experience

shows that errors can occur at any stage of development.

Errors due to coding may occur because of faulty design.

Such errors are usually expensive to correct.

Knowledge-based techniques in AI can be used to modify

this traditional approach. One strategy is to automatically

translate from the requirements specification to program

testing. Taking the whole problem as a continuum and

making changes at the specification stage accomplishes this.

The user only provides the requirements and the machine

does the translation into codes. This technique is

advantageous in that:

• If done correctly, it reduces cost.

• Errors detected in coding will be isolated in the

requirements stage.

• Changes need be made only at the requirements stage.

This isolation however is difficult to achieve and has not

proven very efficient for large programs.

To generate a system in software engineering, one might

find another system with similar requirements. The design of

the first system would then be modified until it becomes a

reasonable design for the given problem. Although this

process looks feasible, it has not been demonstrated in

software engineering to any great extent. On the other hand,

AI offers a technique called constraint propagation

technique which gives rise to a truth maintenance system

that can be used for planning. Decisions are made at one

Place of the planning process and carried to the next level.

Then, using analogical reasoning—an offshoot of logical

reasoning and problem solving—is used to compare a

problem for which a solution is known with another problem

to be solved.

A basic problem of software engineering is the long delay

between the requirements specification and product delivery.

This long development cycle causes requirements to change

before product arrival. It therefore becomes imperative to

have an automated system which can take the requirements

and drive all the way through multiple levels of translation

to codes.

In addition, there is the problem of phase independence of

requirements, design and codes. Phase independence means

that any decision made at one level becomes fixed for the

next level. Thus, the coding team is forced to recode

whenever there is change in design. However, the AI

technique that handles this problem is automated

programming which results in reusable code. Thus, when a

change is made in the design, that part of the design that

does not change remains unaffected. Thus, automated tools

for system redesign and reconfiguration resulting from a

change in the requirements will serve a useful purpose. This

technique, of course, cannot work without employing a

constraint propagation technique.

III. TECHNIQUES AND TOOLS OF

AUTOMATED PROGRAMMING

Because of the evolutionary nature of software products, by

the time coding is completed, requirements would have

changed (because of the long processes and stages of

development required in software engineering): a situation

that results in delay between requirement specification and

product delivery. There is therefore a need for design by

experimentation, the feasibility of which lies in automated

programming. Some of the techniques and tools that have

been successfully demonstrated in automated programming

environments include:

• Language Feature: this technique adopts the concept of

late binding (i.e. making data structures very flexible).

In late binding, data structures are not finalized into

particular implementation structures. Thus, quick

prototypes are created which result in efficient codes

that can be easily changed. Another important language

feature is the packaging of data and procedures together

in an object, thus giving rise to object-oriented

programming: a notion that has been found useful in

environments where codes, data structures and concepts

are constantly changing. Lisp provides these facilities.

• Meta Programming: this concept is developed in natural

language processing (a sub field of AI). It uses

automated parser generators and interpreters to generate

executable lisp codes. Its use lies in the modeling of

transition sequences, user interfaces and data

transformations.

• Program Browsers: these look at different portions of a

code that are still being developed or analyzed, possibly

to make changes, thus obviating the need for an ordinary

text editor. The browser understands the

http://www.jetir.org/

© 2018 JETIR October 2018, Volume 5, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR1810A41 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 951

Structures and declarations of the program and can

focus on the portion of the program that is of interest.

• Automated Data Structuring: this means going from a

high-level specification of data structures to a particular

implementation structure.

IV. WHEN DOES AI FOR SE WORK WELL?

The areas in which AI techniques have proved to be useful

in software engineering research and practice can be

characterized as „Probabilistic Software Engineering‟,

„Classification, Learning and Prediction for Software

Engineering‟ and „Search Based Software Engineering‟. In

Fuzzy and probabilistic work, the aim is to apply to

Software Engineering, AI techniques developed to handle

real world problems which are, by their nature, fuzzy and

probabilistic. There is a natural fit here because,

increasingly, software engineering needs to cater for fuzzy,

ill-defined, noisy and incomplete information, as its

applications reach further into our messy, fuzzy and ill-

defined lives. This is not only true of the software systems

we build, but the processes by which they are built, many of

which are based on estimates.

V. RELATIONSHIP BETWEEN

APPROACHES TO AI FOR SE
The various ways in which AI techniques have been applied

in software engineering reveal considerable overlaps. For

instance, the distinctions between probabilistic reasoning and

prediction for software engineering is extremely blurred, if

not rather arbitrary. One can easily think of a prediction

system as nothing more than a probabilistic reasoned. One

can also think of Bayesian models as learners and of

classifiers as learners, probabilistic reasons and/or

optimisers. Indeed, all of the ways in which AI has been

applied to software engineering can be regarded as ways to

optimize either the engineering process or its products and,

as such, they are all examples of Search Based Software

Engineering. That is, whether we think of our problem as

one couched in probability, formulated as a prediction

system or characterized by a need to learn from experience,

we are always seeking to optimize the efficiency and

effectiveness of our approach and to find good cost-benefit

tradeoffs. These optimization goals can usually be

formulated as measurable objectives and constraints, the

solutions to which are likely to reside in large spaces,

making them ripe for computational search. There is very

close interplay between machine learning approaches to

Software Engineering and SBSE approaches. Machine

learning is essentially the study of approaches to

computation that improve with use. In order to improve, we

need a way to measure improvement and, if we have this,

then we can use SBSE to optimize according to it.

Fortunately, in Software Engineering situations we typically

have a large number of candidate measurements against

which we might seek to improve.

VI. CHALLENGES AHEAD IN AI FOR SE
This section outlines some of the open problems in the
application of AI techniques to Software Engineering.

A.SEARCHING FOR STRATEGIES RATHER THAN

INSTANCES

Current approaches to the application of AI to SE tend to

focus on solving specific problem instances: the search for

test data to cover a specific branch or a specific set of

requirements or the fitting of an equation to predict the

quality of a specific system. There is scope to move up the

abstraction chain from problem instances to whole classes of

problems and, from there, to the provision of strategies for

finding solutions rather than the solutions themselves.

B. EXPLOITATION OF MULTICORE

COMPUTATION

A somewhat dated view of AI techniques might consider

them to be highly computationally expensive, making them

potentially unsuited to the large scale problems faced by

software engineers. Fortunately, many of the AI techniques

that we may seek to apply to Software Engineering

problems, such as evolutionary algorithms, are classified as

„embarrassingly parallel‟; they naturally decompose into

sub-computations that can be carried out in parallel.

C.GIVING INSIGHT TO SOFTWARE ENGINEERS

AI techniques do not merely provide another way to find

solutions to software engineering problems, they also offer

ways to yield insight into the nature of these problems and

the spaces in which their solutions are to be found. For

instance, though much work has been able to find good

requirements project plans, designs, and test inputs, there is

also much work that helps us to gain insight into the nature

of these problems. For instance, SBSE has been used to

reveal the tradeoffs between requirements‟ stakeholders and

between requirements and their implementations and to

bring aesthetic judgments into the software design process.

There has also been work on understanding the risks

involved in requirements miss-estimation and in project

completion times, while predictive models of faults, quality,

performance and effort are naturally concerned with the

provision of insight rather than solutions. There remain

many exciting and interesting ways in which A techniques

can be used to gain insight. For example some open

problems concerning program comprehension are described

elsewhere. Such work is, of course, harder to evaluate than

work which merely seeks to provide solutions to problems,

since it involves measuring the effects of the AI techniques

on the provision of insight, rather than against existing

known best solutions. This is inherently more demanding,

and the referees of such papers need to understand and allow

for this elevated evaluation challenge. However, there is

tremendous scope for progress; AI techniques have already

been shown out to perform humans in several software

engineering activities.

D. COMPILING SMART OPTIMISATION INTO

DEPLOYED SOFTWARE

Most of the work on AI for SE, such as optimization,

prediction and learning has been applied off-line to improve

either the software process (such as software production,

designs and testing) or the software itself (automatically

patching improving and porting). We might

http://www.jetir.org/

© 2018 JETIR October 2018, Volume 5, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR1810A41 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 952

ask ourselves “If we can optimize a version of the system,

why not compile the optimization process into the deployed

software so that it becomes dynamically adaptive?”

E. NOVEL AI-FRIENDLY SOFTWARE

DEVELOPMENTAND DEPLOYMENT

We cannot expect to simply graft AI techniques into existing

Software Engineering process and use-cases. We need to

adapt the processes and products to better suit a software

engineering world rich in the application of AI techniques.

AI algorithms are already giving us intelligent software

analysis, development, testing and decision support systems.

These smart tools seek to support existing software

development methods and processes, as constructed for

largely human-intensive software development. As the use

of automated smart AI-inspired tools proliferates, we will

need to rethink the best ways in which these can be

incorporated into the software development process.

VII. CONCLUSION
Although a very formal theory has been discussed,

automated programming still has its own limitations and is

sometimes impractical. With the concepts well illustrated,

the problem is in the synthesis of big programs. Thus,

special cases will need to be identified where these

processes are practical.

Besides, the basic concepts for automating program

development must be language independent. One of the

enhanced language features is object-oriented programming

which shortens the requirements-to-code cycle. This object-

oriented concept has now been fully developed and is been

embedded in a number of object-oriented languages such as

C++, Visual C++. Data and procedure packaging (or data

binding), another language feature, has also been implanted

in visual basic, C++, Visual dbase, Delphi, among others.

VIII. REFERENCES

[1]. Stuart Russell and Peter Norvig, Artificial

Intelligence: A Modern Approach (Prentice Hall

Publishers, Upper Saddle River, New Jersey USA)

1994.

[2]. Ian Sommerville, Software Engineering (6th Edn.)

(Addison Wesley Publishers, New York, New
York, USA) 2000.

[3]. Roger S. Pressman, Software Engineering: A

Beginner‟s Guide (McGraw Hill Higher Education

Publishers, New York, New York, USA) 1988.

[4]. Seth Hock, Computers and Computing (Houghton

Mifflin College Publishers, Boston, Massachusetts,

USA) 1989.

[5]. M.L. Emrich, A. Robert Sadlowe, and F. Lloyd

Arrowood (Editors), Expert Systems And

Advanced Data Processing: Proceedings of the

conference on Expert Systems Technology the

ADP Environment (Elsevier-North Holland, New

York, New York, USA) 1988.

[6]. Shari Lawrence Pfleeger, Software Engineering:

theory and Practice (Prentice Hall Publishers,

Upper Saddle River, New Jersey, USA) 1998.

[7]. C.S. French, Data Processing and Information

Technology (10th edition), (Letts Educational

Publishers, London, United Kingdom) 1996.

[8]. 8.American journal of undergraduate research

VOL. 1 NO. 1 (2002)

http://www.jetir.org/

